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synopsis 
The relationship between spread height and upstream reservoir thickness, with power 

law coefficient as parameter, was obtained analytically. At all valu& of n studied, 
the value of r (ratio of spread height to nip width) increases with increasing values of 
H/ho where H is upstream reservoir thickness and & is nip width. At higher values of 
H / h ,  the curves of T versus H/ho tend to “flatten” out, and r approaches an asymptotic 
value. For example, the asymptotic value of T for Newtonian fluids (power law constant 
of 1) is 1.226. Asymptotic values of r increase with decreasing values of the power law 
constant. 

INTRODUCTION 

Calendering is a widely used method for the production of plastic films. 
Ability to predict the final thickness (spread height) of the calendered sheet 
is of obvious importance. 

In many industrial applications the fluid located between the rollers is 
nonuniform in temperature, and the film leaving the rollers is no longer 
liquid but solid. For the idealized analysis presented in this paper, it will 
be assumed that the fluid temperature is uniform and that the film leaving 
the rollers is still liquid. 

PREVIOUS WORK 

During the past 35 years, a number of papers pertaining to flow between 
rotating cylinders (calendering) were published, including general reviews of 
the Most of the papers published during this period have 
been primarily concerned with deriving theoretical expressions for pressure, 
shear rate, shear stress, and velocity distributions in the fluid field. How- 
ever, to calculate the above quantities from the equations presented, the 
value of spread height has to be known. In general, the authors do not 
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RESERVOIR 

Fig. 1. Ardichvili’s assumed model for roller systems. Note: Rollers have no 
translatory motion; radius of rollers (R) much greater than nip width; figure not 
drawn to scale. 

Fig. 2. Gaskell’s assumed model for roller systems. Note: Rollers have no transla- 
tory motion; radius of rollers (R) much greater than nip width; figare not drawn to 
scale. 

present expressions which can be used to calculate values of hl (one half of 
the spread height, and also equivalent to half the distance of separation 
between the rollers at  the point of maximum pressure), nor do they actually 
present numerical values. The few authors who do discuss spread height 
generally do not consider the influence of power law constant or upstream 
reservoir thickness on the value of hl. They usually present a single value, 
applicable to a specific situation. 

Ardichvili2 analytically determined that when H (one half the thickness 
of the upstream fluid reservoir) is much larger than ho (one half the nip 
width), then hl is equal to 4/3h~. In his analysis, which is restricted to a 
Newtonian fluid, Ardichvili assumed that the calendered fluid “left off” at 
the nip and that the final thickness (i.e., spread height) was therefore equal 
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to the nip width (2h). Thus, in his assumed system, pressure dropped to 
zero at  the nip. (See Fig. 1 for Ardichvili’s postulated model and Fig. 2 for 
a definition of the “leave off” point.) It should be noted that in Ardich- 
vili’s analysis, hl is equivalent only to one half the distance of separation of 
the rollers at the point of maximum pressure, and is not equal to one half the 
spread height. 

I n  calculating pressures and in evaluating thermal effects in the fluid 
field, Eley’ also assumed that the fluid “left off” at the nip. In a follow-up 
evaluation of thermal effects, Finstong took a more realistic view of the 
calendering process. He based his calculations on the model proposed by 
Gaskell. lo 

Gaskell asserted that in order to analyze the calendering process cor- 
rectly, it should be assumed that fluid “leaves off” at  a certain distance past 
the nip and that pressure drops to atmospheric at  the “leave off” point. 
The point of maximum pressure is obviously located upstream of the nip 
(see Fig. 2). Gaskell, however, does not present any explicit expressions 
for calculating hl, nor does he present any numerical values. 

The validity of Gaskell’s assumed model was confirmed by the experi- 
mental measurements of Bergen and S ~ o t t . ~  These authors demonstrated 
that the pressure in the nip was quite significant and that the pressure did 
not drop to ambient (i.e., zero gauge) until some distance past the nip. 
Bergen and Scott’s measured pressure distribution showed much better 
agreement with calculations based on Gaskell’s model than with values com- 
puted from Ardichvili’s model. 

Dexter and Marshall8 claimed to have used Gaskell’s model in analyzing 
their experimental data but then went ahead and made use of the relation 
hl = 4/3ho. As previously noted, Ardichvili showed that this relationship 
was true only for a Newtonian fluid under the following two conditions: (1) 
His much greater than ho, and (2) fluid “leaves off” at  the nip. Gaskell has 
shown this second assumption to be incorrect. In Dexter and Marshall’s 

OIRECTION OF 
FLUID MOTIOU 

Fig. 3. Forces acting on a fluid element. 
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experiments, H is much larger than ho; but since the fluid does not "leave 
off" at the nip, hl is not equal to 

None of the above-mentioned authors either calculated or measured 
values of r as a function of H and n over large ranges of these latter variables. 
M~Kelvey '~ calculated r as a function of H/ho for a Newtonian fluid, but 
over a very limited range, i.e., at values of H/& ranging from 1 to 2. 

Most of the papers described above assumed that the fluid wm New- 
tonian. However, the morerecent papers on the subject have taken pseudo- 
plastic3J and viscoelastic b a h a v i ~ r ~ . ' ~ ~ ' ~ - ' ~  into account. When the visco- 
elastic constitutive equations were substituted into the equations of motion, 
the resulting expressions were very complex and could not be solved 
analytically. Chong6 and White and T~kita '~- '*  used these complex ex- 
pressions as a basis for formulating dimensionless groups which are in- 
portant in the calendering process and also in ascertaining which of these 
groups could be correlated with defects in the calendered sheet. 

Chong and White and Tokita did not discuss the factors which determine 
the value of hl. Interestingly, though, Atkinson and Nancarrow3 state 
that the spread height is equal to the nip thickness unless the fluid has 
elastic properties. As previously mentioned Gaskell has shown this view to 
be unrealistic. In addition, Chong's Figure 36 implies that the value of r is 
1.33, regardless of upstream reservoir thickness or power law constant. 
The results of the present paper will show that this is also incorrect. 

THEORY 

Qualitative Aspects 

As previously mentioned, the model now generally accepted for a fluid 
flowing between rotating cylinders is shown in Figure 2. If the fluid were 
to "leave off" at  the nip as Ardichvili proposed, then the pressure would 
have to fall to ambient at  this point. However, the elevated pressure must 
actually extend past the nip, even in the absence of elastic recovery (visco- 
elasticity), because the average fluid velocity at the nip is greater than the 
velocity of the roll surfaces. lo The fluid will then occupy the space between 
the rollers until its pressure drops to ambient. The spread height of the 
fluid, even for a purely viscous liquid, therefore has to be greater than the 
nip width. 

It is the equation of conservation of mass which dictates that the average 
velocity of the fluid flowing through the nip be greater than the speed of the 
rollers. At some point upstream of the nip, i.e., where the pressure is a 
maximum, the velocity profile is flat and the absolute velocity of the fluid is 
equal to the roller speed. The decrease in flow cross-sectional area in going 
from this upstream point to the nip necessitates an increase in the average 
fluid velocity at the nip. 
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Derivation of Equation Used to Calculate Spread Height 

A force balance on an element of fluid moving with the flowing liquid 
yields (see Fig. 3) 

In  deriving eq. (l), it was assumed that the inertial forces are negligible 
compared with the surface (i.e., viscous) forces. This assertion is tanta- 
mount to assuming that the acceleration of the particle can be neglected, 
an assumption usually made in lubricating and calendering analyses. The 
constitutive equation for a power law fluid is given simply by 

T = -Kl$I du n-l - (E). 
Newtonian fluids are only a special case of the more general power law 
liquid. For a Newtonian fluid, n is equal to unity and K is equal to the 
viscosity. 

Equation (3)  results from differentiating eq. (2) and combining the result 
with eq. (1): 

By integrating eq. (3)  twice and utilizing the boundary conditions du/dy = 
Oaty = 0,andu = U a t y  = h,weobtain 

Combination of eq. (4) with the equation of continuity, 

Q = 2 sh udy = 2Uh1, 
0 

yields eq. ( 5 ) ,  after algebraic simplification: 

Equation (5 )  was transformed into terms of h only, eq. (7), by making the 
substitution 

Equation (6) is an approximate geometric relationship, but it is reasonably 
accurate for typical situations in which fluid is flowing between rotating 
cylinders. All of the references that mathematically analyze the calender- 
ing process make use of this approximate relationship: 
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Ih - (h - hi) - dp. $ - .  (I). """ + n 1 ) 2 U j * .  h2n+1 d m  - dh (7) 

Essentially, the integrated form of eq. (7) was used to calculate spread 
height as a function of H ,  with power law constant n as parameter. The 
general method for integrating eq. (7) will be described below. For the 
Newtonian case, i.e., where n = 1, eq. (7) can be solved exactly, and an 
analytical expression relating hl to H can be obtained. This exact integra- 
tion is presented in the appendix. However, when n is less than l ,  or is 
greater than 1 but not an integer, eq. (7) has to be solved by a graphical trial 
and error method. 

Equation (7) can be solved conveniently with an additipnal variable 
transformation : 

or 

(9) 

It should be noted that while h only assumes positive values, x and E range 
from positive to negative values. 

By combining eqs. (7) and (9), we obtain 

The pressure distribution in the fluid field can be calculated by integrating 
eq. (10). (As previously mentioned, for all noninteger values of n, the in- 
tegration would have to be done graphically.) Once the pressure distribu- 
tion has been calculated, the velocity and shear rate distributions can be 
calculated from eq. (4) and the derivative of eq. (4), respectively. The 
determined pressure distribution can also be used to calculate the shear 
stress distribution from eq. (1). 

The limits of integration for eq. (10) are established by noting that pres- 
sure equals zero (i.e., zero gauge) a t  6 = El, (the leave-off point) and that 
p = p a t  t = - 5, any point upstream of the nip. The integral of eq. (10) 
may therefore be expressed as 

d 2 R h O .  (;) . [ ( 2 n  + 1)2U]"j-;'  It2 - 5.l2In-Yt2 - h2)& = p .  ( 1 1 )  

d2Z% - .  (:) . ( ( 2 ~  +n1)2u)n Jr'" It2 - b21"-'(E2 - ti2)d€ = 0. (12) 

hon f' n ((2 + 1)2"+'  

The spread height of the liquid was obtained by noting that p = 0 a t  
5 = -Ex (the inlet point). Equation ( 1 1 )  therefore becomes 

b n + i  ((2 + 1)2n+' 
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Since the term 

is not equal to zero, eq. (12) reduces to 

The geometrical meaning of eq. (13) is best visualized by dividing the above 
integral into three parts: 

I I1 

I11 

A plot of f(t) versus [ is shown in Figure 4. The plot is, of course, appli- 
cable for any particular value of n. The direction of integration is also indi- 
cated in the figure. Areas I and I1 represent positive quantities because the 
integration is carried out in the negative x: direction. (Obviously, areas I 

DIRECTION OF INTEGRATION 

0 t F, 
"LEAVE-OFF"POINT 

\ 

POINT OF CONTACT 
B E T W E E N  VP5TREAM 
RESERVOIR AND 

ROLLERS 

'I 
I 

I 
Fig. 4. Plot of f(6) versus [. 
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L 

Fig. 5. Spread height as a function of upstream reservoir thickness with power law 
constant as parameter. 

and I1 are equal.) Area I11 is negative, and the value of - t H  is such that 
the magnitude of area I11 is equal to the magnitude of the sums of areas I 
and 11, as dictated by eq. (14). 

Solution of Eq. (14) to Determine hl/ho as a Function of H/ho 

The method used to compute hl/ho as a function of H/ho for a given value 
of n is described below. The actual numerical calculations were performed 
on an IBM 360/30 computer. For reasons of convenience, H i s  computed 
as a function of hl rather than the reverse. The steps and the order in 
which they are performed are listed below. 

) d t  is 
evaluated graphically using Simpson's rule,16 and the result is doubled. 
The final result is equal to  the sum of the integrals: 

1. A value of t1 is chosen. The value of the integral s2 { 

2. A value of tH was then assumed, and the value of the integral 

was compared with 
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If the values of the above bracketed terms were unequal, a new value of & 
was assumed and the value of .fIAH { 

The procedure in this step (step 2) was repeated until a value of 
EH was found such that .fr[,” { 1 dt. 
This value of tH (or H )  was taken to be the appropriate value for the chosen 
value of (or hl). 

A new value of hl (or E l )  was then chosen, and the process (steps 1 
through 3) was repeated. In this manner, values of H corresponding to 
values of hl, with n as parameter, were obtained (see Fig. 5). 

For several different values of hl, the entire procedure described above 
(steps 1-4) was repeated using intervals of [ equal to one quarter of those 
used in the original calculations. The smaller interval size had no significant 
effect on the final calculated results. 

f d,$ was recomputed. 
3. 

f d t  was equal t0.f; { f dE + .fCE‘ { 

4. 

RESULTS AND DISCUSSION 

Curves of r as a function of H/ho with the power law constant as param- 
eter are presented in Figure 5. Values of H/ho range from 1 to 1000, and 
curves are presented for values of n equal to 0.1, 0.25, 1.0, and 4.0. 

For all values of n, the curve of r versus H/ho  levels off at  “large” values 
of H/ho. These “leveled off ,” or asymptotic, values of r have been labelled 

It is interesting to note that, at low values of H/ho, r increases with in- 
creasing n. However, at the larger values of upstream reservoir thickness, 
r increases with decreasing values of n, as can be seen from Figure 5. The 

I I I  I I I I I I  I I I I I I I I I  I : l l l l !  

1.3 0 I- -I 
\ 

Fig. 6. Asymptotic value of r as a function of power law constant. 
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/ 

U 
Fig. 8. Velocity distribution between rollers and stagnation envelope. Arrows indicate 

velocity vectors. 

results of the present work also predict that r is independent of roller speed, 
roller gap, the radius of the rollers, and viscosity (for non-Newtonian fluids 
it is independent of the constant K ) .  

McKelveyl3 presents values of 1’ at various values of H/ho for a Newtonian 
fluid. His values, along with those calculated in the present paper, are 
shown in Figure 7. The agreement is excellent. 3fcKelvey’s values, how- 
ever, do not extend to large ratios of H/h,. Jones” calculated the value of 
r for a Newtonian fluid at  a value of H / b  equal to infinity. His calculated 
value of 1.226 is in perfect agreement with the graphically calculated value 
of the present work. 

As previously mentioned, theory predicts that larger values of H result in 
greater spread heights. Bergen and Scott5 experimentally confirmed this 
relationship. An explanation for this phenomenon is as follows : Pressure 
is ambient at  the point of contact between the upstream reservoir and the 
rollers; it increases continuously to the point of maximum pressure and 
then decreases to about one half its maximum value when the nip is reached. 
Pressures are, therefore, higher in the nip at  the larger H’s because of the 
greater distance over which pressure can build up. The elevated pressure 
in the nip has to be “discharged,” i.e., reduced to zero gauge, before the 
fluid can leave the rollers. Since at the higher H’s greater pressures in the 
nip have to be discharged, greater distances from the nip are required to dis- 
charge these higher pressures. Thus, from purely qualitative reasoning it 
is certainly reasonable to expect hl to increase with increasing H .  

It is interesting to note that the equations described earlier predict the 
existence of a circulatory motion in the upstream fluid reservoir. In fact, 
Ancker’ photographed this motion. Chong6 actually showed how eqs. (3) 
and (4) could be used to predict the existence of this circulatory motion in 
the reservoir. The explanation is as follows: At some position upstream of 
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the nip, the velocity is zero along the centerline. At each position upstream 
of this centerline stagnation point, there exist two stagnation points (see 
Fig. 8). The fluid within the envelope formed by the loci of the stagnation 
points is in backflow, whereas the liquid outside the envelope is flowing in a 
downstream direction toward the nip. The backflow, coupled with the 
normal downstream flow, leads to  circulatory fluid patterns in the reservoir. 

CONCLUSIONS 

1. At low values of H/ho,  the ratio r decreases with decreasing n, 
whereas a t  the larger values of H/ho, r increases with decreasing power law 
const ant. 

2. 
3. 

At all values of n studied, r approaches an asymptotic value. 
The functional relationship between r and H/ho is independent of 

roller speed, roller radius, and nip width. It is also independent of vis- 
cosity in the case of Newtonian fluids and is independent of K (the constant 
in the shear rate-shear stress relation) for power law fluids. 

APPENDIX 
Exact Solution of Newtonian Case 

As with the power law case, the derivation of the final equation for a Newtonian fluid 
Noting that, for Newtonian fluids, n = 1 and K = p, eq. (7) can start with eq. (7). 

is transformed into 

Integrating eq. (A-1) fromp = 0 a t  h = hi top = p at h = h, we obtain 

As shown above, the integral was divided into two parts, and a negative sign was 
placed before the second part. It should be noted that E or z can range from positive 
to negative values, whereas h can only take on positive values. Thus, the negative sign 
before the second integral in eq. (A-2) is necessary if the entire integral in this equation 
is to have the same meaning as the integral in eq. (11). 

The functional dependence of hl on H can be obtained by actually integrating eq. 
(A-2) and noting that p again equals zero (i.e., zero gauge) when h = H. The result is 
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TABLE A-I 
~ _ _ _ _ ~ ~  ~ 

Hlho r = hl/ho 

2 1.128 
5 1.197 

10 1.215 
101 1.226 

m 1.226 

Equation (A-3) was solved by trial and error. The results are listed in Table A-I. 
As expected, these values are in almost exact agreement with those calculated graphi- 
cally for the case of n = 1. 

A quick glance at eq. (A-3) would tend to indicate that for a given value of H/ho there 
are an infinite number of values of r. This apparently would be due to the fact that the 
arctangent function is multivalued for a given value of its argument. However, in 
order to solve eq. (A-3) by a method which is mathematically valid, one has to either 
restrict the value of the arctangent function to principal values (ie., between - u / 2  
and +u/2), or restrict the values of tan-' d ( H / b )  - 1 and tan-' 1/~:1 to Ihe same 
quadrant. Thus, for every value of H/ho there exists a unique value of T .  

h 

ho 

hi 

H 
K 
n 
P 
Q 
R 
r 
rm 

U 

Y 
P 
5 
'$1 

U 

2 

Nomenclature 
= distance from center plane to periphery of roller at any value 

of x 
= '/2 of the minimum gap between rollers, minimum gap also termed 

nip width 
= '/2 of the spread height; also equivalent to half the distance of 

separation between the rollers at  the point of maximum pressure 
= l / Z  o€ the upstream reservoir thickness 
= constant in shear stress-shear rate relationship 
= power law constant 
= pressure 
= volumetric flow rate 
= radius of rollers 
= ratio of spread height to nip width 
= asymptotic value of r 
= point or local velocity 
= average velocity 
= position in lateral direction 
= position in logitudinal direction 
= viscosity 
= defined by eq. (9) 
= value of '$ corresponding to the "leave off" point; corresponds 

to point of maximum pressure 
- lH = value of '$ corresponding to the point of contact between the up- 

T = shear stress 
stream reservoir and the rollers 

It2 - 5I2ln-' (P - t?) 
(.y + 1)2n+' 

{ 1 = symbol for the term 
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